Definitions of integral elements and quotient rings over non-commutative rings with identity
نویسندگان
چکیده
منابع مشابه
AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملCommutative Rings with Finite Quotient Fields
We consider the class of all commutative reduced rings for which there exists a finite subset T ⊂ A such that all projections on quotients by prime ideals of A are surjective when restricted to T . A complete structure theorem is given for this class of rings, and it is studied its relation with other finiteness conditions on the quotients of a ring over its prime ideals. Introduction Our aim i...
متن کاملDirected Graphs of Commutative Rings with Identity
The directed graph of a ring is a graphical representation of its additive and multiplicative structure. Using the directed edge relationship (a, b) → (a + b, a · b), one can create a directed graph for every ring. This paper focuses on the structure of the sources in directed graphs of commutative rings with identity, with special concentration in the finite and reduced cases. Acknowledgements...
متن کاملStrongly Clean Matrix Rings over Commutative Rings
A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1972
ISSN: 0004-9735
DOI: 10.1017/s1446788700009174